

the 4th tractable probabilistic modeling workshop

uai2021

école—— normale—— supérieure— paris-saclay—

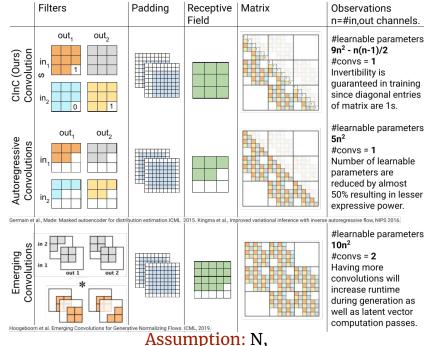
CInC Flow: Characterizable Invertible 3×3 Convolution

Sandeep Nagar¹, Marius Dufraisse², Girish Varma¹
¹Machine Learning Lab, IIIT Hyderabad, India.
²CS Dept., École Normale Supérieure (ENS), Paris-Saclay, France.

Characterizable Invertible Convolution (CInC)

Goal:

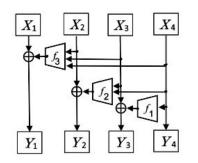
Design CNNs that are invertible, which can be used to build efficient and expressive normalizing flows.


We design a convolution which

- 1. is guaranteed to be invertible during training,
- 2. has more learnable parameters leading to better expressivity,
- 3. and is easy to implement efficiently,
- 4. a new coupling method.

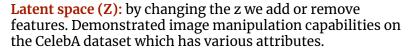
Characterization:

for N=1, diagonal entries of convolution matrix (M) are $K_{n,n}$ of kernel (K) with size n and input is padded(top and left) with n-1.


M is invertible iff $K_{n,n} \neq 0$.

input channels = # output channels

Characterizable Invertible Convolution (CInC)


Quad-coupling (proposed): we use a modified version of the coupling layer designed to have a bigger receptive field. Inspired from generalized Feistal (Hong et al., 2010.)

We divide the input into four blocks x_1 , x_2 , x_3 , $x_4 = y_4$

Why Quad-coupling?

- Expressive coupling mechanism
- Flexibility
- output (y): concatenation of y,
- f, and g, are learned
- component wise addition

Benchmark and Quantitative results:

Forward
(x) (z)
Backward

Dataset	<u>Sampling</u> Emerging	time (in sec) CInC Flow
Cifar10	2.45	1.31
ImageNet32	4.96	2.76

-	Coupling	Emerging 3x3 Inv. conv.	Our 3x3 Inv. conv.	
-	Affine	3.3851	3.4209	_
	Quad	3.3612	3.3879	

